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Division of Applied Mathematics and
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Abstract This paper concerns differential equations which contain strong
mixing random processes. The solution process is shown to be well approx-
imated by a deterministic trajectory, over an infinite time interval, using
the interplay between the rate of fluctuations of the random proc,.s and
the rate of the o mixing. An application of the result is given for analysing
synaptic modifications in Neural Networks.

1. Introduction

Thae mathematical theory of stochastic differential equations is concerned mainly with

the study of It6 equations and the associated Markov process. Mostly, the results on non

It6 type equations have been concerned with the conditions under which x, (t) converges (as

e -- 0) to a diffusion process on finite intervals [0, TIE] (cf. Stratonovich, 1963; Cogburn

and Hersh, 1973; Papanicolaou and Kohler, 1974; Blankenship and Papanicolaou 1977).

Averaging results for random differential equations are usually discussed in conjunction with

the law of large numbers Kohler and Papanicolaou (1976) with the central linit theorem

for (x,(t) - y,(t))/vc on [0, T] (cf. Khasninskii, 1966; and White 1976). Genian (1979)

showed that the solution process of a random differential equation which contains strong

mixing randon process is well approximated by a detcrniinistic trajectory over a tiite

time interval, and for a more restricted systems, over the infinite time interval. Analysis
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N. Intrator March 9, 1990

analogous to that was carried out on It6 type equations by Vrkoc (1966), and by Lybrand

(1975).

In this paper we shall continue the direction taken by Geman and approximate the solu-

tion process by a deterministic trajectory over an infinite time interval, using the interplay

between the rate of fluctuations of the random process and the rate of the ' mixing, yield-

ing a result for a wiWe family of nonlinear random differential equations. We will establish

conditions under which the random solution stays close in L' sense to the associated deter-

ministic solution. The result is particularly useful when a converging deterministic equation

is approximated by a random equation that is more computationally feasible. Section 4 is

devoted to such an application, in the theory of synaptic modification in Neural Networks.

Similar analysis was carried out on the discrete time version of such equations, see Ljung

(1978), Kushner and Clark, (1978), Dupuis and Kushner (1987), and the references therein.

2. Formulation and statement of the problem

In this section we briefly summarize the relevant results form Geman (1977, 1979).

Lct 4(t,w) be a bounded stationary stochastic process with .F0 and .77," the a-fields

generated by {1(r,w) : 0 < -r < t}, and {4(i,w): t < r < oo} respectively. Let the signed

measure vt,6 be defined on (Q x Q,_.F x .'Y 6 ) by

vt, 6 =P(w:(w,w) EB)-P x P(B), for BE -FO XFt 6 .

For any {B E F' x Ft+}, the set u'(w,w) E B) is in Jr, and since it is also a monotone

class, v is well defined. The stochastic process 0(t,w), is said to have Type II ,;- mixing if

o(b) = sup sup I vt,(A) 0 -or .

Remark on V nixing: The results we describe hold for Type I mixing as well, both of 11 0to-

which were introduced by Volkonskii and Rozanov (1959), since for both types of mixing

we have Ivt,6(fl x 11) <_ 2p(6). on/,
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Let c be a positive number, and consider the system:

,(t, w) = H(z,(t, w), w, t/E),

(t) = G.(Y.,(t), t), (2.1)

z,(O,w) = Y,(O) = xo E R&.

Assume:

1. H is jointly measurable with respect to its three arguments.

2. G,(z,t) = E[H(z(s,w),t/e)], and for all i and j

- Gi(z, t) exists, and is continuous in (z, t).

3. For some T > 0:

a. There exists a unique solution, z(t,w), on [0, T] for almost all w; and

b. A solution to

g(,X,) = G(g(t, , ),t), g(5, s, ) = X,

exists on [0, TI x [0, T] x RI.

The following notations w.ill be used:

def1. Hc(ae(t,w),w,t) = H(a,(t,w),w,t/E)

2. g(t,s,z) = (als)g(t,s,,x).

3. g.(t,s,z) = the n x n matrix with (i,j) component (O/xj)gi(t,s,x).

4. For If(z,w,r) define the families of a-fields YF aad Ftm such that, for each t > 0. TO,

contains the a-field generated by

{If (X, ,,) 7 _ t,x C R},

and Ft contains the a-field generated by

{H(z,w,r) : t < r < oo, z E R"}.

wopl2 v2.11 3



N. Intrator March 9, 1990

The relation between the random differential equation and its averaged version for system

(2.1) under conditions (1), (2), and (3) is given by:

Lemma (Geman 1977) For any C1 function K : R" --4 R' and t E [0, T):

- E[K(x(t))] = K(y(t)) + jtf (HKgts~~ ) H(x (s, w),q,s) dv,ods,

provided that

(f-K(g(t,s,z(s,w)))) .H(x(s,w),ihs), and

are absolutely integrable on fl x fl x [0, T], with respect to dP(w)dP(r7)ds.

The proof of the lemma is based on the relationship between the initial conditions in

time and in space for an ODE, namely: If g(t, s, x) is the function satisfying

-g(t, s,x) = G(g(t,s, ),t)
49t

then

gs(t, s, xr) --, --gx(t, s, x)G(.x, s)

for all t E [0, oo), s E [0, oo),.and x E R'. This follows from the observation that g(t, s, z)

is constant along trajectories of the form (.,, x(s)) (cf. Hartman, 1964 chap 5).

Theorem (Geman, 1977) Finite time averaging. Assume also that:

4. There exist continuous functions Bi (r, t), B2(r, t), and B3 (r, t), such that for all i, j, k, r >

0, and w:

a. I Hi,(X.,,,,,t, 7) 1_< B,( ' z~)

b. I (O x)Hi(a, w, t, -r) 1 B2(I xi);

C. I (O2/Oa'a Ok)Hi(x, w,t, r) I_< B 3 (I X I,t).

5. SUPo>0JEJ0,T) I y,(t) 1< B 4 for some B 4 and T.

wopl2 v2.11 4
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Then

sup I x'(t) - y(t) -- 0
tE[oT] C--

in probability.

3. Averaging on [0, oo)

When averaging on an infinite interval we require that c be a function of t and E \ 0,

meaning that the mixing rate becomes stronger in time. More specifically, let c be a function

of the form E(t) = co0(t) where 9 is monotonically decreasing to zero in time.

The above lemma still holds when x, H, g and G are replaced by z,, He, ge and G.

respectively, and also when e becomes a function of t.

In order for the approximation to hold on [0, co) we require that B1 , B 2, B 3 are constants

in condition 4 (this will be relaxed later) extend condition 5 to hold for t G [0, oc), and add

the following relation between the rate of the mixing of H and the convergence of t to zero:

6. 3 -y > 0, c > 0, such that (p) <_ b-'Y, and Z(t) < t-(V+1+c), for a monotone decreasing

Theorem 3.1 Assume He is of Type II p mixing, and satisfies condition 1-6, then

linm sup E x,(t) - y,(t) 1= 0.
I o t>0

Proof- Assume first that t is an integer. Fix e and apply the lenmna to the system using

K(x) =1 z - (t) ':

E I z,(t) - ye(t) 12=

= Lf (-K(g,(t, s, X(s'w))) H,(z,(s,w), q, s)dvods

K_ (gI K(g((t, s, ,(s, w))) • H(xz(s, w), 7, s)d ,ods I

wopl2 v2.11 5
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For any fixed 6 > 0 (to be chosen later), since each integral is bounded we can write Vk:

1  K(g(t, s, z K's, w)))) Ie (x,(s, ), 77, s) dv5 ,dds.

II + fk+ (-K (g (t, S, X,(S - ,W)

H (x, (s - 6 k, w), r7, s)dv,,o ds

+ I'k+6& jX1 {(9 K(geL~~~(~)) He (x.(s, w),77, s)

- (a K(g.(t,s,, (s - 6k, w)))) He(x.(s - 6k,W) 17, s)} dv,,ods.

The bounds on x, and its derivatives, and the smoothness of K imply that I is O(bk). In

the second term we can replace v. 0 by V,-6, 6 since these measures agree on (QT x fI, or- 6 x

Y;O), s > 6, and since Z,(s - 6,w) is FO 6 measurable. Since vt.6 is the difference of two

probability measures, the total variation measure satisfies:

Ivlt,(fQ x 11) _< 2, and Ivjt,6 (f x Ql) 2 vIt(A),
AEF' x.F-+

therefore, with Type II (or I) mixing: IvlI,6(Q x Q) < 2 (f). Applying this to the second

integral and using the above bounds again we get that 11 is O(p(bkl/E(k - 1))). The last

term is also O(bk) from the smoothness of He and of x,.

Now choose 6 k V X/(k - l) - (1+e c), k > 1, then since f(k - 1) < fo(k - I

we get 6k/(k- 1) _' (k - 1) c. From the condition on O we have p(6k/(k - 1)) _

E1N(k - 1)-('+4'c). Since - > 0, the sum

(6)+ 0 P6 , ~ ))) = 0o(c + ).
k>1

For the segment of t between two integers, an analogous argument is applied yielding an

extra term of the form O(c + c(). therefore E I .x(t) - y,(t) 12= 0(E( +' )) unifornly in

t.

wopl2 v2.11 6
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This implies that

supE I - yt ( - y,(t) I'= o
t>o

lir sup E I x,(t) - y,(t) I'= 0.
co-.0 t>0

The following problem is closely related: For fixed u, let H(z,w,t) map R" x Rm x R 1

into R'. Assume that for each x, H(xw,t) is a m ing process, and for each x and t define

G(z, t) = E[H(z, w, t)]. Consider the random equation

4(t,,w) = H(aCt,w4,, t), a(,W) =zo, (3.1)

with its averaged equation

jj (t) = ZG(y (t),t), y (0) = xo. (3.2)

For equation (3.2) condition 6 becomes:

6'. 3y > 0, such that

i) 0(5) < 6-1,

ii) Z(t) = Eor(t)tP, for p c > , and Vt: 0 < c, < r(t) < c,.2+c' -

Theorem 3.2 Under the assumptions of theorem (3.1) and (6');

lim sup E I xj(t - Yi(t) 12 = 0.
t0 0 t>0

Proof- Apply the change of variables: t = dt (2 + c)TI+cdT, to equation (3.1):

= r((2+±c)T,(tc ( , / ,T +))),

for c(r) = Eo-r-(+c). Now observe that c satisfies condition (6) in theorem (3.1), which

gives the desired result.

wopl2 v2.11 7
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As can be seen from the proof, p has to satisfy the conditions 1 < p < 1, and Z(t) has

to be greater than t- 1 so that r(t) _> co > 0, which allows the invocation of the previous

theorem. It follows that if i(t) = t-1, a convergence is assured for any Type II mixing.

Obviously, p may be larger than 1 since Z may be split into two functions, one bounded

and the other satisfying the conditions of the theorem. The same argument holds for r(t),

however, it is clear that one would like Z to go as slow as possible to zero, since then if

the averaged version has a limit, the convergence rate of both equations to that limit is

inversely proportional to p.

It is possible to -xtend the theory to the cases where the partial derivatives of H have a

polynomial growth it time. Then c has to decrease faster so that the above integrals may

still be controlled. We get the following theorem:

Theorem 3.3 Assume that B 1 , B 2 , B 3 , and B 4 are bounded by t' for some a > 0 in

condition 4 of theorem 3.1, and replace condition 6 with the following:

6. 3 -y > 0, c > , such that p(6) < 6-8 , and Z(t) 5 t - ( +c+3 a ), for a monotone decreasing

Z. Then

lixr. sup E I x,(t) - y,(t)1'= 0.
Co- 0 t>O

Proof: When applying the lemma as before we get the following:

I (6)(k 1)-'

II = O k/k - 1))k 2'
k

III = 0(8k)k3-.

k
I c-

Now chose Sk =Vic(k - 1)2(1+ (c2 z+3,) then since ((t) < t-(l+c+3a), we get just as

before bk/(k -1) > ' (k 1)1(c-). The rest of the proof follows exactly as before. 0

wopl2 v2.11 8
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Extending theorem 3.2 to the case where the partial spatial derivatives are bounded by

a polynomial in t is done by absorbing the growth of H into E, which gives the following

corollary:

Corollary 3.4 Assume that B 1 , B 2 , B3 and B 4 are bounded by t* for some a > 0 in

condition 4 of theorem 3.1, and replace condition 6 in theorem 3.2 with the following:

6'. 3-1 > 0, such that

i) o(6) < -

ii) (t) = Eor(t)t - (c+P), for p = 2+c, c > -, and Vt: 0 < cl < r(t) < c2. Then

lim sup E I xY(t) - yi(t) 12= 0.
o 0-O t> O

An important observation has to be made here: If the deterministic version represents

a converging trajectory, e.g., if the equation represents a gradient descent, then as long as

i(t) > t - 1 , the deterministic version will still converge to a true local minimum, however

if E(t) < t - 1, then f0
°m i(r) < oo, and so the convergence of the deterministic equation is

not assured, which implies that the convergence of the stochastic version to a true local

minimum is not granted.

4. An application to the synaptic modification equations of a BCM1 neuron

In this section, we apply the theorem to a random differential equation representing the

low governing synaptic weight modification in the B1CM theory for learning and memory

in neurons, Bienenstock et al. (1982). We start with a short review on the notations and

definitions of BCM theory, a more thorough review can be found in Intrator (1990), and

the references therein.

Consider a neuron whose input is the vector x = (X, ... , XN), has a synaptic-weight

vector m = (M 1 ,.. .,mN), both in RV, and activity (in the linear region) c = X • 7. The

input x is assumed to be a stochastic process of Type II p mixing, bounded, and piecewise

wopl2 v2.11 9



N. Intrator March 9, 1990

constant. Let O = E[(z .,in) 2 ], €(c, Om) -e 4cO. c represents the linear projection

of x onto rn, and we seek an optimal projection in some sense.

The BCM synaptic modification equations are given by:

rn = (t)(x rn, 0m)x, r(O) = m0 , (4.1)

their averaged version is given by:

M (t)E [O(x. -f, e)x], rh(O) = Moo. (4.2)

pu(t) is a global modulator which is assumed to take into account all the global factors

affecting the cell, e.g., the beginning or end of the critical period, or state of arousal (Bear

and Cooper, 1988).

Equation (4.2) is shown to be a dimensionality reduction method bised on a cost function

that favors directions m for which the distribution of the inputs is different from normal by

means of skewness (Intrator, 1990).

Our aim is to show the convergence of the stochastic differential equation. This will be

done in two step; First we show that the averaged deterministic equation converges, and

then we use theorem 3.2 to show the convergence of the random differential equation to its

averaged deterministic equation.

The convergence of the deterministic equation

Without loss of generality, we may assume that the random process x is in the unit ball

in R N , and Var(x • m) > All m 12 > 0, which simply says that x does not lie in a subspace

or a manifold of RN. Since we are interested in dimensionality reduction, we can always

reduce a-priori the dimensionality of x so that it will span RN for some N. When the theory

is applied to a finite value random vector, Xr , ... ,x, we can restrict 171 to be in the span

of X ,..., Xn0

wop12 v2.11 10
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When we multiply both sides of the above equation by 7nl,, assuming none of its compo-

nents is zero, we get:

2 JM 11 E[( In - - ' (zx  i,)

1 I h,, 1 13  _- V, 2 x n, )
3
4I

II i i 113 { - 4A II i II},

which implies that 11 f,. 11 -- 3

Using this fact we can now show the convergence of fin,. We observe that r, = -VR,

where R(-i,) = E2 [(x. f,) 2 1} is the risk. R is bounded from below

since 11 i, is bounded, therefore fn,, converges to a local minimum of R.

The convergence of the stochastic equation

Claii Under the above conditions mr,(t) converges in L' to a local ininiuniu of the risk.

Proof: The calculation above implies that fin is bounded for (almost) every p.

In our case B 1 , B 2 , B 3 and B4 are independent of t or in,, therefore, if we replace t(t)

by u(t) and apply theorem 3.2, we get

sup EIm ,(t) - f,1(t)12  _ 0.
t>0 Mo

f, the solution to the deterministic equation will converge to the same local mfinliuniX

, Vps if Ipo < C, for some positive constant C. therefore we can choose T for which

Imi(t) - I < , /'o < C, t > t, then for t > t we have:

26
Im4.(t) - J: Jrn.(t) - rh-,(t)J + ji,z.(t) - 15 1171(t) -"',t)OI + - ,

=>' sup ElmA(t) - 1< sup Elm,(t) - i, (t) + ,- b- .

t,w>t >l 22 11

wop 12 v2.1 1
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b is arbitrary, which implies that

Elm,(t) - - 0

5. Summary

It has been shown that under mild conditions, the equations i = EH(x,w, t), and =

EG(y, t) where G(x, t) = E[H(z,w,t)], have close trajectories in the infinite interval when

(t) < t-12. The result may be computationaly useful, and as has been shown in the

example, may assist in the analysis of the random differential equation.
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